Autonomous Patient/Home Health Monitoring Powered by Energy Harvesting

نویسندگان

  • Mai Ali
  • Tuan Nguyen Gia
  • Abd-Elhamid Taha
  • Amir M. Rahmani
  • Tomi Westerlund
  • Pasi Liljeberg
  • Hannu Tenhunen
چکیده

This paper presents the design of an autonomous smart patient/home health monitoring system. Both patient physiological parameters as well as room conditions are being monitored continuously to insure patient safety. The sensors are connected on an IoT regime, where the collected data is wirelessly transferred to a nearby gateway which performs preliminary data analysis, commonly referred to as fog computing, to make sure emergency personnel and healthcare providers are notified in case patient being monitored is at risk. To achieve power autonomy three energy harvesting sources are proposed, namely, solar, RF and thermal. The design of RF energy harvesting system is demonstrated, where novel multiband antenna is fabricated as well as an efficient RF-DC rectifier achieving maximum efficiency of 84%. Finally, the sensor node is tested with different type of sensors and settings while being solely powered by a Photo Voltaic (PV) solar cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Energy-autonomous Wireless Temperature Monitoring System Powered by Piezoelectric Energy Harvesting

Within his publication we demonstrate an energy-autonomous wireless temperature monitoring system that is powered by piezoelectric energy harvesting. An air compressor pump has been chosen as a representative target system. Two different types of piezoelectric generators, cantilever beam with a maximum power output of 37 μW and an impact-type membrane generator with a power output of 120 μW, we...

متن کامل

An Adaptive Self-powered Piezoelectric Energy Harvesting Circuit and Its Application on Bridge Condition Monitoring

The abundant mechanical vibration energy in bridge road environment can be converted into electric energy by using the piezoelectric energy harvest technology, which could be an efficient way to provide energy required by the wireless sensor network in the bridge condition monitoring system. An autonomous energy harvesting system has been designed based on cantilever beams for sensing and acqui...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

Towards Self - Powered Wireless Sensor Networks

Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appli...

متن کامل

On Energy Harvesting Module for Scalable Cognitive Autonomous Nondestructive Sensing Network (SCANS) System for Bridge Health Monitoring

The SCANS is a structural health monitoring (SHM) system is being developed by Acellent Technologies to monitor steel bridges. The required voltage of the system is 14.4 V for active scanning, and the power consumption is approximately 8 W. The investigated energy harvesting from both solar and thermal sources to recharge the lithium-ion battery of the system. A solar panel and a Thermal Electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017